Analysis of Reconstructed Images Using Compressive Sensing

نویسنده

  • Sara Babu
چکیده

Traditionally image reconstruction is done by performing Fast Fourier Transform (FFT). But recently there has been growing interest in using compressive sensing (CS) to perform image reconstruction.In compressive sensing, the main property of signal-Sparsity is explored for reconstruction purposes.In this paper, for image reconstruction, various optimization techniques like L1 optimization, Total Variation (TV) Minimization and Split-Bregman Optimization is used. Among these, the Split-Bregman reconstruction algorithm shows good performances. This is proved by the analysis of reconstructed images using the quality measures such as Peak Signal-to-Noise Ratio (PSNR) and Normalised Absolute Error (NAE). Index Terms – FFT, Compressive Sensing, L1, TV, Split-Bregman, Quality Measures ——————————  ——————————

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compressive Sensing

Compressive sensing is a new type of sampling theory, which predicts that sparse signals and images can be reconstructed from what was previously believed to be incomplete information. As a main feature, efficient algorithms such as l1-minimization can be used for recovery. The theory has many potential applications in signal processing and imaging. This chapter gives an introduction and overvi...

متن کامل

Block Compressive Sensing Algorithm Based on Interleaving Extraction in Contourlet Domain

Abstract: We propose a block image compressive sensing algorithm based on interleaving extraction in Contourlet domain to improve the performance of image sparse representation and quality of reconstructed images. First, we propose the interleaving extraction scheme and partition an image into several sub-images using interleaving extraction. Second, we represent the sub-images in Contourlet do...

متن کامل

A Comparative Study on the Parametrization of a Block-based Compressive Sensing Algorithm for Hyperspectral Imaging Applications

Compressive Sensing-based technologies have shown a great potential to improve the efficiency of acquisition, manipulation, analysis and storage processes on signals and imagery with little discernible loss in data performance. The CS framework is based on the assumption that signals are sparse in some domain and can be reconstructed from a significantly reduced amount of samples. As a result, ...

متن کامل

Image Reconstruction based on Block-based Compressive Sensing

The data of interest are assumed to be represented as Ndimensional real vectors, and these vectors are compressible in some linear basis B, implying that the signals can be reconstructed accurately using only a small number of basis function coefficients associated with B. A new approach based on Compressive Sensing (CS) framework which is a theory that one may achieve an exact signal reconstru...

متن کامل

A CT Reconstruction Algorithm Based on Non-Aliasing Contourlet Transform and Compressive Sensing

Compressive sensing (CS) theory has great potential for reconstructing CT images from sparse-views projection data. Currently, total variation (TV-) based CT reconstruction method is a hot research point in medical CT field, which uses the gradient operator as the sparse representation approach during the iteration process. However, the images reconstructed by this method often suffer the smoot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012